Signal Extraction and the Formulation of Unobserved Components Models

نویسندگان

  • Andrew Harvey
  • Jan Koopman
چکیده

This paper looks at unobserved components models and examines the implied weighting patterns for signal extraction. There are three main themes. The rst is the implications of correlated disturbances driving the components, especially those cases in which the correlation is perfect. The second is how setting up models with t distributed disturbances leads to weighting patterns which are robust to outliers and breaks. The third is a comparison of implied weighting patterns with kernels used in nonparametric trend estimation and equivalent kernels used in spline smoothing. We also examine how weighting patterns are a ected by heteroscedasticity and irregular spacing and provide an illustrative example.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fads Models with Markov Switching Hetroskedasticity: decomposing Tehran Stock Exchange return into Permanent and Transitory Components

Stochastic behavior of stock returns is very important for investors and policy makers in the stock market. In this paper, the stochastic behavior of the return index of Tehran Stock Exchange (TEDPIX) is examined using unobserved component Markov switching model (UC-MS) for the 3/27/2010 until 8/3/2015 period. In this model, stock returns are decomposed into two components; a permanent componen...

متن کامل

Signal Extraction in Continuous Time and the Generalized Hodrick-Prescott Filter

A widely used filter to extract a signal in a time series, in particular in the business cycle analysis, is the Hodrick-Prescott filter. The model that underlies the filter considers the data series as the sum of two unobserved component (signal and non signal) and a smoothing parameter which for quarterly series is set to a specified value. This paper proposes a generalization of the Hodrick-P...

متن کامل

Model Selection for Mixture Models Using Perfect Sample

We have considered a perfect sample method for model selection of finite mixture models with either known (fixed) or unknown number of components which can be applied in the most general setting with assumptions on the relation between the rival models and the true distribution. It is, both, one or neither to be well-specified or mis-specified, they may be nested or non-nested. We consider mixt...

متن کامل

Extraction of Sensory part of Ulnar Nerve Signal Using Blind Source Separation Method

A recorded nerve signal via an electrode is composed of many evokes or action potentials, (originated from individual axons) which may be considered as different initial sources. Recovering these primitive sources in its turn may lead us to the anatomic originations of a nerve signal which will give us outstanding foresights in neural rehabilitations. Accordingly, clinical interests may be r...

متن کامل

Forecasting and Signal Extraction with Misspecified Models

The paper illustrates and compares estimation methods alternative to maximum likelihood, among which multistep estimation and leave-one-out cross-validation, for the purposes of signal extraction, and in particular the separation of the trend from the cycle in economic time series, and longrange forecasting, in the presence of a misspecified, but simply parameterised model. Our workhorse models...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999